Posts

Showing posts with the label vision

Choosing Planets

Let's turn our imagination to the edge and do something different today. We can call it a thought experiment, a childish game, a daydream, science fiction, pure fantasy, or whatever we want, but let's move the boundaries far away from Earth, far away from our solar system, even farther from our galaxy, and do something wild.

Let's choose a planet.

Or, to be more precise, let's select one in the vastness of the cosmos and move away from this Earth and start new life. Of course, in daydreams we are allowed to do this just because the imagination is what our species differs from others on Earth.

Ok, to begin this little endeavor, we need a little astronomy to start with. What we know for sure is that our galaxy alone contains more than 200 billion stars, the majority of them not so different from our Sun, and by using a basic statistical study based on the planet finder's microlensing technique, there are approximately 100 billion planets orbiting them. Perhaps more. Multiply that by a factor of billions of galaxies in our universe, and you'll get that there are far more Earth twins out there than living people on Earth. There are planets for everybody's taste. So let's start with the planet's basic properties.

Choosing the World

It has to be huge, much bigger than Earth, maybe twice as big in size or even more, to harbor as many people as Earth today and still have plenty of room for many more. To be something like in Canada's distant regions today with only up to a thousand people per square kilometer. However, its composition must be radically different than Earth's, as, in my imagination, it has to maintain gravity more or less like the third rock from the Sun. After all, I don't like to move there and look ridiculously dysfunctional when it comes to, say, simple walking. So fewer heavy elements inside, please, and let it be around the famous, well-known number of 9.81. More or less. So no radical changes when gravity is in question, but I would choose the one with radically fewer water layers than we are familiar with within here. Don't get me wrong, I do like water, and I would like to have plenty of it all over the place, but with no oceans or large seas. Rivers are ok in any variety, lakes too, and small seas are also fine, but please no oceans. Nobody needs that. Hey, it's my planet; if you like oceans, find your own, or don't move anywhere; there are lots of oceans here.

Basically, there must be one giant continent in Norway's style with lots of rivers and lakes and small seas with large bays and calm weather. One rotation cycle could be a little longer than Earth's, but not so much over 30 hours. You can't get rid of old habits that easily. Like Earth, it needs to have a slightly tilted rotation axis to provide longer seasons and temperature changes over the year, with a revolution over the main star similar to the one in Mars or approximately twice as long as Earth's. Earth-like atmosphere and its greenhouse effect would provide a temperature range over the year to be a little milder compared to our native planet, maybe no less than -10°C in harsh winters and no higher than +30°C in summers. A tilted axis and position within the habitable zone of the mother star would also provide no big differences between the planet's equator and pole regions. What else? Oh yes, it has to be protected with both a strong magnetic field and a couple of perfectly positioned giant outer planets from both radiation and looney asteroids and comets. It could also be part of a binary star system, where the second star could also provide additional protection when it comes to violent cataclysmic events in the neighborhood. Last and surely not least, it has to be green all over the place. Extremely suitable for cultivation of various kinds of anything possible. The geography of the planet could be variable with both long valleys and mountains, just like in our home yard.

Humanoids by Star Trek "design"

Do you like my paradise so far? In a way, it was not hard to set the basic astronomical properties of the star system and planet itself. However, a bigger challenge comes with defining the demographics of the planet. You might not like it anymore after I continue and say that I would like the planet to be colonized without any domesticated intelligent species. Why? First of all, it wouldn't be right to find a desirable planet along with at least one dominating intelligent species already evolved there. It would be like colonizing the Americas and killing or putting the population into reservations. We've been there. It's just wrong. Secondly, and probably even more important, is that I would like to share it with other intelligent species. Preferably humanoids. Not mandatory, though. That way neither would be in a position to set a flag and say, "This is mine; everybody else is not looking like me; go away". Basically, in my vision, everyone intelligent who would like to come and build a house is welcome at any time as long as they sign some sort of "sharing" agreement. Something similar to the Antarctic Treaty System we are having here on Earth. Basically, the colonization idea would be comparable to the Earth back in dinosaur time, when all the aliens missed the opportunity to colonize it when no domestic intelligent species existed to claim it for itself. Or they didn't miss it at all, and we are actually them and have never been native to this planet.

So how would all that sharing look like, and what kind of civilization am I talking about? There are so-called Kardashev scales defining possible civilizations out there, dividing them into Types I, II, and III, and it, by definition, represents a method of measuring a civilization's level of technological advancement based on the amount of usable energy they have at their disposal. All three types are far away from the civilization of humans as we know it today, and all three are suitable as potential residents for my planet. By the way, let's call it in further text "M." Accidentally, although I first thought of my first name's initial, it is titled more accurately according to the planet's classification seen in Gene Roddenberry's Star Trek. Anyway, the point of using high-end civilization in my story is that young civilizations like ours are simply not suitable. Why? Several reasons, actually. First, it seems that a big amount of mutual tolerance is needed for the sharing principle I have in mind. All desirable intelligent species have to be evolutionary mature and unburdened by racial, religious, and any other interspecies differences. Additionally, the population must be technologically advanced. The system on the planet would be as simple as possible; there would be no countries nor any kind of political organization, no governments of any kind, nothing like on the third rock of our solar system. There will be just one institution, planetary-based, with just one treaty where all colonists have to sign, and it should be pretty simple. If you want to live there, you would have to choose the land that is free and yet unoccupied, claim it yours, and the only condition to keep it is to produce zero waste outside of its boundaries. Otherwise, you can do whatever you want with it—create your dream house, build a school, trade market, entertainment facility, anything at all—as long as you play fair in relation to others.

ISS 3D Printer and first 'emailed' socket wrench

There will be no cities, as the technology at everybody's disposal would provide transportation to the most distant part of the planet easily, safely, and fast. I see smaller settlements, though, based on their mutual benefits and relations. There will be no sports, at least not in the form of the ones we know on Earth. It would be extremely unfair to play, for example, basketball involving multiple species with different masculine properties. However, the technology sports would survive, like races or any kind of recreational activities. Advanced technology in everybody's home would provide planetary and interplanetary networks of various communications; there would be no need for many supporting factories except for basic ingredients, as home computers would be equipped with state-of-the-art 3D printers capable of producing both simple tools and complex machines. The same home computer would also be able to use food replicators for creating food and food supplements. I don't like the existing concept of killing other species and using them for food. Cultivation and planting are perfectly ok, and each household would possess its own greenhouse for growing appropriate food, but I expect high-end civilizations in evolutionary terms would solve "the meat" problem, and I am not talking about a vegetarian diet.

Of course, the main star system would be well explored, with several outposts built for several purposes, along with mining outer moons, other planets, and asteroids in search of all necessary ingredients for planetary life, along with a variety of orbital activities for planetary residents, including entertainment.

Unfortunately, choosing a world to move is still just a dream. Reality still resides far in the future. Nevertheless, I wonder if such a world already exists out there in a far, far... You know.

Image ref:
https://3dprint.com/32269/made-in-space-emails-wrench/

Refs:
http://hubblesite.org/newscenter/archive/releases/2012/07/full/
http://en.wikipedia.org/wiki/Antarctic_Treaty_System
http://www.nasa.gov/audience/foreducators/k-4/features/F_Measuring_Gravity_With_Grace.html
http://en.wikipedia.org/wiki/Kardashev_scale
http://en.wikipedia.org/wiki/Class_M_planet
http://www.imdb.com/name/nm0734472/

Fringe Dream of Virtual Particles

Last night I had a vividly strange science fiction dream. Like with most of my dreams, and dreams in general, I guess, it was hard to recall all the details in the morning, and this one was no exception, but in a nutshell, the scene started with me in some science lab, describing the idea of how to effectively make a tiny hole in the universe. It was pretty simple—I was using four Tesla coils, perfectly positioned in the corners of the large square with edges of about a couple of meters long and with two small, battery-sized metal plates positioned in the center of the square. The experiment was that at the precise moment, Tesla coils fired four filaments of thunder, reaching the center point exactly between two metal plates at the same time, initiating a process that in the end created a tiny breach in the universe that I was describing in the dream as a brane between dimensions and within the void between multiverses. Anyway, in the process, one plate goes from metallic through dark and eventually invisible, while the other started immediately to glow and emit light and other sorts of radiation.


I was explaining in my dream that the breach positioned one plate just outside of our universe while the other stood here. Most of the pairs of virtual particles that were popping between two plates all the time out of vacuum are torn apart by the invisible plate, making them real particles from that point and attracting one toward itself, while the second particle is always attracted by the other plate, creating radiation and the glow in the process. Very similar to the Hawking radiation emitting from the event horizon of the black hole. Even though those two plates were positioned very near to each other, after the Tesla coils did the job by breaching the universe, they stayed in different realms from that point, keeping a relatively close distance between them and finding new equilibrium even when the coils were shut down.

Our plate was then taken out of the square center, wrapped in the bigger case, and used as a battery that never drains. Or, to be precise, not until the invisible plate in the system that is always outside of our universe depletes itself by doing its job of separating the particles, but it was explained in the dream to be an extremely slow process that takes centuries, even if the battery is used to generate lots of power, like empowering entire city blocks.


I know, having a geeky or nerdy dream can be weird for most people, but it's not that we can choose what to dream, can we? It is surely a product of my daydreams, so to speak, and definitely an outcome from my daily interests in astrophysics by watching various documentaries and reading articles online. The novel-like storyline was definitely the consequence of all of my science fiction fascination in both movies and books, which I enjoy from time to time as well. In this very case, the background of the entire story from the last night and today's post is all about the most intriguing feature of the universe. The one that might change everything one day. Virtual particles. They are one of those scientific theories that has extraordinary potential for the future. If we find a way to capture and control them. Hopefully not by poking our universe with bolts of lightning. :-)

But seriously, and sci-fi aside, let's see why virtual particles are one of those quantum properties I think we still wait to understand fully. First of all, they are not really virtual per se; they differ from real particles only by their short existence in time. Aside from that, they can have some or even all properties of the real particles, including mass, but so far it is not really possible to observe virtual particles due to their short lives. However, in the subatomic world, virtual particles are often found in diagrams invented by Richard Feynman that revolutionized theoretical physics by their simplicity to explain what was really happening during the quantum events.


For example, take the Feynman diagram above. It shows how two electrons collide. The internal line is a virtual photon, which is in this case a representation of the excitation of the electromagnetic field caused by electrons and their interaction. We can observe both electrons, their velocities, and paths, but we are helpless to spot the virtual particle. In this very case, whether this virtual photon is really a particle, lasting only a tiny fraction of time during collision, which would give it the title of an actual mediator of the force, just like what its counterpart, the real photon, is, or it is used just as a calculation aid, it is not really certain, but in the end any particle, real or virtual, is only a representation of the excitations of the underlying quantum fields. However, even though they are called "virtual" because of their unobservability, and even though we can't see how they "look" and "act," in one experiment we are definitely able to observe what they do. Experiment proposed by Hendrick Casimir in 1948 and confirmed by Steven Lamoreaux in 1996. The experiment is probably responsible for my dream in the first place. The Casimir effect of the virtual particle-powered machine is just by using two metal plates positioned very near each other. But to understand the Casimir effect, we need to understand one simple thing. Timespace itself. I am not kidding. This is mandatory and a requirement for further reading. Easy. ;-)

Well, I am not pretending that I understand what really happens in the universe, but mainstream science of the current date says, and I am trying to paraphrase it, that all that is around us and within us and at any point in time is just one soup of various fields. Like the Higgs field I talked about once earlier on the blog. Or gravitational field. Or in this post's story and this particular case, electromagnetic field. Any field, by definition, is a region in space (and time?) that is affected by some force. At any point in the field. It also means that a field is a region in space that contains energy. Now, an electromagnetic field is not something that can occupy a certain part of space. It is literally everywhere. It is a fundamental field that is actually in the background of the entire universe and not just in places with matter. Everywhere. Even in the vacuum, where nothing tangible exists. Some places contain more energy than others, with a vacuum being a place with the electromagnetic field in its lowest energy state. Not zero. Now, keep with me; it gets interesting—let's compare this field with actual soup that is always boiling.


If you are looking at the surface of the boiling soup, you will see bubbles and fluid filaments all over the surface, but at some places they are heavier and more powerful, and at other places they are calmer and more peaceful, but always boiling and moving. If we were able to glimpse a closer look and magnify the surface to see it on an even smaller scale, we would see that the entire surface is in a chaotic state of constant wibbling, wabbling, wobbling, blooping, and bubbling*. The same is with electromagnetic fields. The stronger wabbles are what we identify as electromagnetic radiation that propagates forward (and in the case of our soup, outside the pot to the kitchen floor), while the tiny wibbles are just a short-lived emission of photons or failed radiation, if you will.

That tiny failed radiation is possible thanks to quantum mechanics that allows temporary violations of conservation of energy, so one smaller particle can become a pair of heavier particles, and in the case of a photon, it goes from changes of being a wave, a mediator particle with no mass, or a pair of heavier particles—a couple of electrons and positrons (or a pair of quarks and antiquarks with radiation of one gluon). What exactly it is and when it happens is dependent on the ongoing process and energy levels of the system, but in the case of the lowest energy state of vacuum, we know that heavier particles are popping all the time, and due to the uncertainty principle, those virtual particles always appear in pairs. They are borrowing the energy from the vacuum and immediately collide and annihilate themselves, repaying the energy in order not to violate the laws of thermodynamics. These streams of virtual particles "coming out of vacuum and diving back" are well-known quantum features known as quantum fluctuations of the electromagnetic field.


Now, those virtual particles popping out into short existence are coming pretty randomly—and in all possible wavelengths—which brings to "the surface" a vast amount of energy due to their short life, normally invisible to us. If we position two uncharged metal plates very near to each other (less than a micrometer), only those virtual particles whose wavelengths fit a whole number of times into the gap emerge between the plates, while outside, without limitations, all possible wavelengths are accounted for. The result is that energy density between the plates is way less than the energy density of the surrounding space, and immediately a tiny force appears and starts pulling the plates toward each other. This force is named the "Casimir force", and the entire system the "Casimir effect". On first glance, it doesn't look strange—the same effect can be made with two plates in water that, with small waves created by a sonic generator**, are pulling toward each other as well—but keep in mind that the actual Casimir experiment is performed in a vacuum with no single atom of matter between or outside the monitoring system, and the plates are uncharged. So the "only effort" we need to make is to put them very near to each other, and they will start moving. The force is tiny, though; for example, for the one-square-meter plates apart by just one micron, the force is 1.3 mN*** (the weight of 1 kg is about 10N). The force is stronger for bigger plates and with shorter distances in between.

However, one potential propulsion engine, built on the principles of the Casimir effect with even a tiny but constant push like this one, is comparable with ion engines that create thrust by accelerating ions with electricity. For example, in "Dawn", the spacecraft that recently arrived in the asteroid belt was propelled by three xenon-ion thrusters, each with a force of only 90 mN. Eventually, after more than 8 years of travel, it accumulated acceleration over the mission to more than 10 km/s (41,260 km/h), which is pretty fast for a tiny push (even though it used other means of acceleration like gravity boost while transiting Mars). It carried almost 400 kg of xenon for the ion thrust engine, but the potential Casimir engine of the future would need none of such a payload. Its propellant would be the very vacuum of spacetime and its pairs of virtual particles.


Of course, the real application would come with separating virtual particles like in my dream or what black holes seem to do**** on a daily basis. If there is a way to make virtual particles real, the millinewtons will instantly lose that 'milli' prefix and be equipped with one more powerful (perhaps 'kilo' or 'mega'), and that will be something extraordinary. Something that in science fiction has a cool acronym. ZPE. Zero Point Energy. Surely, we must find other means to deal with this than by creating tiny black holes to do the job for us, but thankfully, the quantum world is always full of surprises, and perhaps one day we will build a machine that is capable of taking the energy out of a vacuum safely and is small in size, relatively speaking. Perhaps another quantum effect will be helpful for this job, the one that uses interactions between hydrogen electrons and virtual particles called the Lamb shift. But that is a story for another time.

Image refs:
https://www.nasa.gov/mission_pages/dawn/main/index.html
http://www.livescience.com/50119-superconductors-physicists-gravity-particles.html
http://pics-about-space.com/black-hole-hawking-radiation-diagram?p=3

Refs:
http://math.ucr.edu/home/baez/physics/Quantum/virtual_particles.html
* https://www.youtube.com/watch?v=Kn5PMa5xRq4
https://en.wikipedia.org/wiki/Zero-energy_universe
https://briankoberlein.com/2015/03/06/nothing-but-net/
** https://www.youtube.com/watch?v=PS8Lbq2VYIk
https://www.scientificamerican.com/article/are-virtual-particles-rea/
http://physics.stackexchange.com/questions/147096/are-virtual-particles-tool
***http://math.ucr.edu/home/baez/physics/Quantum/casimir.html
https://en.wikipedia.org/wiki/Virtual_particle
****https://en.wikipedia.org/wiki/Hawking_radiation